Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Journal of Southern Medical University ; (12): 1002-1009, 2023.
Article in Chinese | WPRIM | ID: wpr-987014

ABSTRACT

OBJECTIVE@#To explore the interaction between Tubulin beta 4B class IVb (TUBB4B) and Agtpbp1/cytosolic carboxypeptidase- like1 (CCP1) in mouse primary spermatocytes (GC-2 cells) and the role of TUBB4B in regulating the development of GC-2 cells.@*METHODS@#Lentiviral vectors were used to infect GC-2 cells to construct TUBB4B knockdown and negative control (NC-KD) cells. The stable cell lines with TUBB4B overexpression (Tubb4b-OE) and the negative control (NC-OE) cells were screened using purinomycin. RT-qPCR and Western blotting were used to verify successful cell modeling and explore the relationship between TUBB4B and CCP1 expressions in GC-2 cells. The effects of TUBB4B silencing and overexpression on the proliferation and cell cycle of GC-2 cells were evaluated using CCK8 assay and flow cytometry. The signaling pathway proteins showing significant changes in response to TUBB4B silencing or overexpression were identified using Western blotting and immunofluorescence assay and then labeled for verification at the cellular level.@*RESULTS@#Both TUBB4B silencing and overexpression in GC-2 cells caused consistent changes in the mRNA and protein expressions of CCP1 (P < 0.05). Similarly, TUBB4B expression also showed consistent changes at the mRNA and protein after CCP1 knockdown and restoration (P < 0.05). TUBB4B knockdown and overexpression had no significant effect on proliferation rate or cell cycle of GC-2 cells, but caused significant changes in the key proteins of the nuclear factor kappa-B (NF-κB) signaling pathway (p65 and p-p65) and the mitogen-activated protein kinase (MAPK) signaling pathway (ErK1/2 and p-Erk1/2) (P < 0.05); CCP1 knockdown induced significant changes in PolyE expression in GC-2 cells (P < 0.05).@*CONCLUSIONS@#TUBB4B and CCP1 interact via a mutual positive regulation mechanism in GC-2 cells. CCP-1 can deglutamize TUBB4B, and the latter is involved in the regulation of NF-κB and MAPK signaling pathways in primary spermatocytes.


Subject(s)
Animals , Male , Mice , GTP-Binding Proteins/metabolism , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , RNA, Messenger , Serine-Type D-Ala-D-Ala Carboxypeptidase/metabolism , Signal Transduction , Spermatocytes , Tubulin/genetics
2.
International Journal of Oral Science ; (4): 11-11, 2023.
Article in English | WPRIM | ID: wpr-971598

ABSTRACT

Tumor-associated macrophages (TAMs) play crucial roles in tumor progression and immune responses. However, mechanisms of driving TAMs to antitumor function remain unknown. Here, transcriptome profiling analysis of human oral cancer tissues indicated that regulator of G protein signaling 12 (RGS12) regulates pathologic processes and immune-related pathways. Mice with RGS12 knockout in macrophages displayed decreased M1 TAMs in oral cancer tissues, and extensive proliferation and invasion of oral cancer cells. RGS12 increased the M1 macrophages with features of increased ciliated cell number and cilia length. Mechanistically, RGS12 associates with and activates MYC binding protein 2 (MYCBP2) to degrade the cilia protein kinesin family member 2A (KIF2A) in TAMs. Our results demonstrate that RGS12 is an essential oral cancer biomarker and regulator for immunosuppressive TAMs activation.


Subject(s)
Mice , Humans , Animals , Tumor-Associated Macrophages/metabolism , Carcinoma, Squamous Cell , Squamous Cell Carcinoma of Head and Neck , Mouth Neoplasms , GTP-Binding Proteins/metabolism , Head and Neck Neoplasms , Ubiquitin-Protein Ligases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , RGS Proteins/metabolism , Kinesins/metabolism , Repressor Proteins/metabolism
3.
Int. braz. j. urol ; 46(3): 353-362, May-June 2020. tab, graf
Article in English | LILACS | ID: biblio-1090612

ABSTRACT

ABSTRACT Purpose: Testicular germ cells tumor (TGCT) are associated with a high cure rate and are treated with platinum-based chemotherapy. However, a group of testicular cancer patients may have a very unfavorable evolution and insensitivity to the main therapeutic agent chemotherapy (CT) cisplatin. The aim of this study was to evaluate the risk of recurrence and overall survival related to the expression of nuclear factor kappa-B (NF-κB), transglutaminase 2 (TG2) and excision repair cross-complementation group 1 (ERCC1) in patients with TGCT treated with platinum combinations. Patients and Methods: A retrospective study was performed with TGCT patients treated with platinum-based chemotherapy. Immunohistochemical analysis was performed and the expression was correlated with clinical and laboratory data. Results: Fifty patients were included, the mean age was 28.4 years (18 to 45), and 76% were non-seminoma. All patients were treated with standard cisplatin, etoposide and bleomycin or cisplatin, and etoposide. Patient's analyzed immunodetection for NF-κB, TG2, and ERCC1 were positive in 76%, 54% and 42%, respectively. Multivariate analysis identified that positive expressions to ERCC1 and NF-κB are independent risk factors for higher recurrence TGCT after chemotherapy (RR 2.96 and 3.16, respectively). Patients with positive expression of ERCC1 presented a poor overall survival rate for 10-year follow (p=0.001). Conclusions: The expression of ERCC1 and NF-κB give a worse prognosis for relapse, and only ERCC1 had an influence on the overall survival of TGCT patients treated with platinum-based chemotherapy. These may represent markers that predict poor clinical outcome and response to cisplatin.


Subject(s)
Humans , Male , Adult , Testicular Neoplasms , Transglutaminases/metabolism , NF-kappa B/metabolism , GTP-Binding Proteins/metabolism , Lung Neoplasms , Prognosis , Antineoplastic Combined Chemotherapy Protocols , Retrospective Studies , Cisplatin , Drug Resistance, Neoplasm/physiology , DNA-Binding Proteins , DNA Repair , Endonucleases
4.
Cad. saúde pública ; 31(4): 837-849, 04/2015. tab, graf
Article in Spanish | LILACS | ID: lil-744855

ABSTRACT

Comprender el significado del capital social de la diabetes tipo 2 según género, dentro un contexto urbano colombiano. Investigación cualitativa del interaccionismo simbólico. 25 mujeres y 16 hombres, diabéticos, familiares, vecinos y personal asistencial participaron en seis grupos focales. Emergieron 850 códigos que se integraron en un set de 142 códigos de códigos para el ego, el alter y alter ego. Tres categorías y veinte subcategorías fueron identificadas para el diseño del "paradigma de la codificación". El significado no es igual para hombres y mujeres. Los vínculos sociales de las redes sociales, creados cotidianamente por la confianza y la solidaridad para el cuidado, son valorados de manera diferente, debido a experiencias y hechos sociales resultantes de la autoconfianza, la autoeficacia para el apoyo social principalmente y, la autoestima frente al manejo y control de la enfermedad. Los recursos sociales de un individuo son reificados para el manejo y cuidado de la enfermedad como estrategia para disminuir las inequidades en salud.


The aim of this study was to understand the meaning of social capital in relation to type 2 diabetes according to gender, within an urban setting in Colombia, based on a qualitative design for symbolic interactionism. Twenty-four women and 16 men with diabetes, family members, and healthcare personnel participated in six focus groups. A total of 850 codes emerged that comprised a set of 142 codes for ego, alter, and alter ego. Three categories and 20 subcategories were identified for the "coding paradigm design". The meaning differed between men and women. Social ties in social networks, created daily through trust and solidarity for care, were valued differently due to the social experiences and events resulting from self-confidence, self-efficacy for social support, and mainly self-esteem vis-à-vis management and control of the disease. An individual's social resources are reified for the management and care of the disease as a strategy to mitigate health inequalities. .


Compreender o significado do capital social, diabetes tipo 2 por sexo, um contexto urbano da Colômbia. pesquisa qualitativa do interacionismo simbólico. 25 mulheres e 16 homens, diabéticos, familiares, vizinhos e cuidadores participaram seis grupos focais. 850 códigos se que foram integrados em um conjunto de 142 codes para o ego, o alter e alter ego. Três categorias e vinte subcategorias foram identificados para o projeto de "codificação de paradigma". O significado não é o mesmo para homens e mulheres. Laços sociais das redes sociais criadas diariamente pela confiança e solidariedade são valorizados cuidado diferente, porque as experiências sociais e fatos resultantes da auto-confiança, auto-eficácia e de apoio social, principalmente, auto-gestão e controle em relação a doença. Os recursos sociais de um indivíduo são reificadas para a gestão o cuidado da doença como uma estratégia para reduzir as desigualdades na saúde.


Subject(s)
Humans , Analgesics, Opioid/chemistry , Receptors, Opioid, kappa/agonists , Acetamides/chemistry , Acetamides/pharmacology , Analgesics, Opioid/pharmacology , Arrestins/metabolism , Computer Simulation , Databases, Chemical , Diterpenes/chemistry , Diterpenes/pharmacology , Dynorphins/chemistry , Dynorphins/pharmacology , GTP-Binding Proteins/metabolism , High-Throughput Screening Assays , Ligands , Protein Transport , Receptors, Opioid, kappa/chemistry , Receptors, Opioid, kappa/metabolism , Signal Transduction , Structure-Activity Relationship
5.
Salud pública Méx ; 57(1): 4-13, ene.-feb. 2015. tab
Article in English | LILACS | ID: lil-736456

ABSTRACT

Objective. To describe food expenditure and consumption of foods prepared away from home among Mexican adults. Materials and methods. Data were from 45 241 adult participants in the National Health and Nutrition Survey 2006, a nationally-representative, cross-sectional survey of Mexican households. Descriptive statistics and multivariable linear and logistic regression were used to assess the relationship between location of residence, educational attainment, socioeconomic status and the following: 1) expenditure on all food and at restaurants, and 2) frequency of consumption of comida corrida or restaurant food and street food. Results. Food expenditure and consumption of food prepared away from home were positively associated with socioeconomic status, educational attainment, and urban vs. rural residence (p<0.001 for all relationships in bivariate analyses). Conclusions. Consumption of food prepared outside home may be an important part of the diet among urban Mexican adults and those with high socioeconomic status and educational attainment.


Objetivo. Describir los gastos en alimentos y el consumo de alimentos preparados fuera de casa en población mexicana. Material y métodos. Los datos fueron de 45 241 adultos mexicanos en la Encuesta Nacional de Salud y Nutrición de 2006, representativa al nivel nacional. Se utilizaron estadísticas descriptivas y regresión linear y logística para estimar la relación entre el lugar de residencia, el nivel educativo y el nivel socioeconómico, con el gasto en todos los alimentos y en restaurantes, y con la frecuencia de consumo de comida corrida, en restaurantes y de la calle. Resultados. El gasto en alimentos y el consumo de alimentos preparados se asociaron positivamente con el nivel socioeconómico, el nivel educativo y la residencia rural (p<0,001 para todas las relaciones). Conclusiones. El consumo de alimentos preparados puede ser una parte importante de la dieta de los adultos urbanos y de aquéllos con altos niveles socioeconómicos y educativos.


Subject(s)
Animals , Cricetinae , Female , Humans , Male , Mice , G Protein-Coupled Inwardly-Rectifying Potassium Channels/chemistry , Neurodegenerative Diseases/pathology , Spinal Cord/metabolism , Tyrosine/chemistry , DNA , Anisomycin/chemistry , Antibodies/chemistry , Behavior , Blotting, Western , CHO Cells , Cell Line , Cell Line, Tumor , Dose-Response Relationship, Drug , Electrophysiology , Enzyme-Linked Immunosorbent Assay , G Protein-Coupled Inwardly-Rectifying Potassium Channels/physiology , GTP-Binding Proteins/metabolism , Heart Atria/metabolism , Heart Ventricles/cytology , Heart Ventricles/pathology , Immunoblotting , Immunohistochemistry , Inflammation , Microscopy, Confocal , Microscopy, Fluorescence , Muscle Cells/metabolism , Neurons/metabolism , Phosphorylation , Plasmids/metabolism , Protein Structure, Tertiary , Sciatic Nerve/metabolism , Spinal Cord/pathology , Stress, Physiological , Xenopus laevis
6.
J. bras. nefrol ; 36(4): 512-518, Oct-Dec/2014. tab
Article in English | LILACS | ID: lil-731151

ABSTRACT

Introduction: Tuberculosis is a common opportunistic infection in renal transplant patients. Objective: To obtain a clinical and laboratory description of transplant patients diagnosed with tuberculosis and their response to treatment during a period ranging from 2005 to 2013 at the Pablo Tobón Uribe Hospital. Methods: Retrospective and descriptive study. Results: In 641 renal transplants, tuberculosis was confirmed in 12 cases. Of these, 25% had a history of acute rejection, and 50% had creatinine levels greater than 1.5 mg/dl prior to infection. The disease typically presented as pulmonary (50%) and disseminated (33.3%). The first phase of treatment consisted of 3 months of HZRE (isoniazid, pyrazinamide, rifampicin and ethambutol) in 75% of the cases and HZME (isoniazid, pyrazinamide, moxifloxacin and ethambutol) in 25% of the cases. During the second phase of the treatment, 75% of the cases received isoniazid and rifampicin, and 25% of the cases received isoniazid and ethambutol. The length of treatment varied between 6 and 18 months. In 41.7% of patients, hepatotoxicity was associated with the beginning of anti-tuberculosis therapy. During a year-long follow-up, renal function remained stable, and the mortality rate was 16.7%. Conclusion: Tuberculosis in the renal transplant population studied caused diverse nonspecific symptoms. Pulmonary and disseminated tuberculosis were the most frequent forms and required prolonged treatment. Antituberculosis medications had a high toxicity and mortality. This infection must be considered when patients present with a febrile syndrome of unknown origin, especially during the first year after renal transplant. .


Introdução: A tuberculose é uma infecção oportunista comum em pacientes transplantados renais. Objetivo: Oferecer uma descrição clínica e laboratorial de pacientes transplantados com diagnóstico de tuberculose e sua resposta ao tratamento durante o período entre 2005 e 2013 no Hospital Pablo Tobón Uribe. Métodos: Estudo retrospectivo descritivo. Resultados: Em 641 transplantes renais, a tuberculose foi confirmada em 12 pacientes. Destes, 25% tinham histórico de rejeição aguda e 50% apresentaram níveis de creatinina superiores a 1,5 mg/dl antes da infecção. A patologia geralmente se apresentava como pulmonar (50%) e disseminada (33,3%). A primeira fase do tratamento consistiu de três meses de HZRE (isoniazida, pirazinamida, rifampicina e etambutol) em 75% dos casos e HZME (isoniazida, pirazinamida, moxifloxacina e etambutol) em 25% dos pacientes. Durante a segunda fase do tratamento, 75% dos pacientes receberam isoniazida e rifampicina e 25% isoniazida e etambutol. A duração do tratamento variou entre seis e 18 meses. Em 41,7% dos pacientes, hepatotoxicidade foi associada ao início do tratamento da tuberculose. Durante o seguimento de um ano a função renal manteve-se estável e a taxa de mortalidade foi de 16,7%. Conclusão: A tuberculose foi responsável por diversos sintomas inespecíficos na população de transplantados renais estudada. Tuberculose pulmonar e disseminada foram as formas mais frequentes de acometimento e necessitaram de tratamento prolongado. Medicamentos contra a tuberculose apresentaram alta toxicidade e mortalidade. Esta infecção deve ser considerada quando o paciente apresenta síndrome febril de origem desconhecida, especialmente durante o primeiro ano após o transplante renal. .


Subject(s)
Animals , Female , Male , Mice , Locus Coeruleus/drug effects , Narcotics/pharmacology , Neural Inhibition/drug effects , Neurons/drug effects , Potassium Channels/metabolism , Barium/pharmacology , Calcium/metabolism , Enkephalin, Methionine/pharmacology , G Protein-Coupled Inwardly-Rectifying Potassium Channels , GTP-Binding Proteins/metabolism , Heterozygote , Homozygote , Ion Channel Gating/drug effects , Ion Channel Gating/physiology , Locus Coeruleus/cytology , Locus Coeruleus/physiology , Mice, Knockout , Membrane Potentials/drug effects , Membrane Potentials/physiology , Neural Inhibition/physiology , Neurons/physiology , Patch-Clamp Techniques , Protein Subunits , Potassium Channel Blockers/pharmacology , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Potassium Channels, Inwardly Rectifying/deficiency , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels/deficiency , Potassium Channels/genetics
7.
Experimental & Molecular Medicine ; : e15-2013.
Article in English | WPRIM | ID: wpr-165479

ABSTRACT

The parasite Entamoeba histolytica causes amebic colitis and systemic amebiasis. Among the known amebic factors contributing to pathogenesis are signaling pathways involving heterotrimeric and Ras superfamily G proteins. Here, we review the current knowledge of the roles of heterotrimeric G protein subunits, Ras, Rho and Rab GTPase families in E. histolytica pathogenesis, as well as of their downstream signaling effectors and nucleotide cycle regulators. Heterotrimeric G protein signaling likely modulates amebic motility and attachment to and killing of host cells, in part through activation of an RGS-RhoGEF (regulator of G protein signaling-Rho guanine nucleotide exchange factor) effector. Rho family GTPases, as well as RhoGEFs and Rho effectors (formins and p21-activated kinases) regulate the dynamic actin cytoskeleton of E. histolytica and associated pathogenesis-related cellular processes, such as migration, invasion, phagocytosis and evasion of the host immune response by surface receptor capping. A remarkably large family of 91 Rab GTPases has multiple roles in a complex amebic vesicular trafficking system required for phagocytosis and pinocytosis and secretion of known virulence factors, such as amebapores and cysteine proteases. Although much remains to be discovered, recent studies of G protein signaling in E. histolytica have enhanced our understanding of parasitic pathogenesis and have also highlighted possible targets for pharmacological manipulation.


Subject(s)
Animals , Humans , Entamoeba histolytica/metabolism , Entamoebiasis/parasitology , GTP-Binding Proteins/metabolism , Heterotrimeric GTP-Binding Proteins/metabolism , Signal Transduction , ras Proteins/metabolism
8.
Experimental & Molecular Medicine ; : e27-2013.
Article in English | WPRIM | ID: wpr-119450

ABSTRACT

Wnt5a is a ligand that activates the noncanonical Wnt signaling pathways (beta-catenin-independent pathways). Human neutrophils expressed several Wnt5a receptors, such as Frizzled 2, 5 and 8. Stimulation of human neutrophils with Wnt5a caused chemotactic migration and the production of two important chemokines, CXCL8 and CCL2. CCL2 production by Wnt5a was mediated by a pertussis toxin-sensitive G-protein-dependent pathway. Wnt5a also stimulated the phosphorylation of three mitogen-activated protein kinases (MAPKs: ERK, p38 MAPK and JNK) and Akt. Inhibition of ERK, p38 MAPK or JNK by specific inhibitors induced a dramatic reduction in Wnt5a-induced CCL2 production. Supernatant collected from lipopolysaccharide-stimulated macrophages induced neutrophil chemotaxis, which was significantly inhibited by anti-Wnt5a antibody. Our results suggested that Wnt5a may contribute to neutrophil recruitment, mediating the inflammation response.


Subject(s)
Animals , Humans , Mice , Activating Transcription Factor 2/metabolism , Cell Separation , Chemokines/biosynthesis , Chemotaxis/drug effects , Culture Media, Conditioned/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , GTP-Binding Proteins/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Lipopolysaccharides/pharmacology , Macrophages/drug effects , NF-kappa B/metabolism , Neutrophils/cytology , Pertussis Toxin/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Wnt/metabolism , Type C Phospholipases/metabolism , Wnt Proteins/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism
9.
Experimental & Molecular Medicine ; : 639-650, 2010.
Article in English | WPRIM | ID: wpr-162253

ABSTRACT

An abrupt increase of intracellular Ca2+ is observed in cells under hypoxic or oxidatively stressed conditions. The dysregulated increase of cytosolic Ca2+ triggers apoptotic cell death through mitochondrial swelling and activation of Ca2+-dependent enzymes. Transglutaminase 2 (TG2) is a Ca2+-dependent enzyme that catalyzes transamidation reaction producing cross-linked and polyaminated proteins. TG2 activity is known to be involved in the apoptotic process. However, the pro-apoptotic role of TG2 is still controversial. In this study, we investigate the role of TG2 in apoptosis induced by Ca2+-overload. Overexpression of TG2 inhibited the A23187-induced apoptosis through suppression of caspase-3 and -9 activities, cytochrome c release into cytosol, and mitochondria membrane depolarization. Conversely, down-regulation of TG2 caused the increases of cell death, caspase-3 activity and cytochrome c in cytosol in response to Ca2+-overload. Western blot analysis of Bcl-2 family proteins showed that TG2 reduced the expression level of Bax protein. Moreover, overexpression of Bax abrogated the anti-apoptotic effect of TG2, indicating that TG2-mediated suppression of Bax is responsible for inhibiting cell death under Ca2+-overloaded conditions. Our findings revealed a novel anti-apoptotic pathway involving TG2, and suggested the induction of TG2 as a novel strategy for promoting cell survival in diseases such as ischemia and neurodegeneration.


Subject(s)
Humans , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Calcimycin/pharmacology , Calcium/metabolism , Caspases/metabolism , Cell Death , Cell Survival , Cytochromes c/metabolism , Down-Regulation , GTP-Binding Proteins/metabolism , HEK293 Cells , HeLa Cells , Ionophores/pharmacology , Mitochondria/metabolism , Transglutaminases/metabolism , bcl-2-Associated X Protein/genetics
10.
Yonsei Medical Journal ; : 9-17, 2010.
Article in English | WPRIM | ID: wpr-39516

ABSTRACT

Intrinsic cellular defenses are non-specific antiviral activities by recognizing pathogen-associated molecular patterns (PAMPs). Toll-like receptors (TLRs), one of the pathogen recognize receptor (PRR), sense various microbial ligands. Especially, TLR2, TLR3, TLR4, TLR7, TLR8 and TLR9 recognize viral ligands such as glycoprotein, single- or double-stranded RNA and CpG nucleotides. The binding of viral ligands to TLRs transmits its signal to Toll/interleukin-1 receptor (TIR) to activate transcription factors via signal transduction pathway. Through activation of transcription factors, such as interferon regulatory factor-3, 5, and 7 (IRF-3, 5, 7) or nuclear factor-kappaB (NF-kappaB), type I interferons are induced, and antiviral proteins such as myxovirus-resistance protein (Mx) GTPase, RNA-dependent Protein Kinase (PKR), ribonuclease L (RNase L), Oligo-adenylate Synthetase (OAS) and Interferon Stimulated Gene (ISG) are further expressed. These antiviral proteins play an important role of antiviral resistancy against several viral pathogens in infected cells and further activate innate immune responses.


Subject(s)
Animals , Humans , GTP-Binding Proteins/metabolism , Interferon Regulatory Factors/metabolism , Interferon Type I/metabolism , Models, Biological , NF-kappa B/metabolism , Toll-Like Receptors/metabolism , Virus Diseases/immunology , eIF-2 Kinase/metabolism
11.
Arq. bras. endocrinol. metab ; 51(5): 654-671, jul. 2007. ilus, tab
Article in English | LILACS | ID: lil-463385

ABSTRACT

Thyroid cancers are the most frequent endocrine neoplasms and mutations in the thyrotropin receptor (TSHR) are unusually frequent. Here we present the state-of-the-art concerning the role of TSHR in thyroid cancer and discuss it in light of the cancer stem cell theory or the classical view. We briefly review the gene and protein structure updating the cancer related TSHR mutations database. Intriguingly, hyperfunctioning TSHR mutants characterise differentiated cancers in contrast to undifferentiated thyroid cancers which very often bear silenced TSHR. It remains unclear whether TSHR alterations in thyroid cancers play a role in the onset or they appear as a consequence of genetic instability during evolution, but the presence of functional TSHR is exploited in therapy. We outline the signalling network build up in the thyrocyte between TSHR/PKA and other proliferative pathways such as Wnt, PI3K and MAPK. This networks integrity surely plays a role in the onset/evolution of thyroid cancer and needs further research. Lastly, future investigation of epigenetic events occurring at the TSHR and other loci may give better clues for molecular based therapy of undifferentiated thyroid carcinomas. Targeted demethylating agents, histone deacetylase inhibitors combined with retinoids and specific RNAis may help treatment in the future.


Os cânceres de tiróide são as neoplasias endócrinas mais frequentes e as mutações no receptor de tirotrofina (TSHR) são incomumente frequentes. Nesta revisão nós apresentamos o "estado da arte" com relação ao papel do TSHR no câncer de tiróide e o discutimos à luz da teoria da célula matriz do câncer ou a visão clássica. Revisamos brevemente a estrutura do gene e da proteína, atualizando a base de dados das mutações do TSHR relacionadas ao câncer. Curiosamente, mutações do TSHR com hiperfunção caracterizam cânceres diferenciados, em contraste com os cânceres de tiróide indiferenciados, os quais muito comumente mostram TSHR silenciados. Permanece obscuro se as alterações do TSHR em cânceres de tiróide têm algum papel no surgimento ou se elas aparecem como conseqüência da instabilidade genética durante seu desenvolvimento, mas a presença de TSHR funcional é explorada na terapia. Nós delineamos a rede de sinalizacão desenvolvida no tirócito entre TSHR/PKA e outras vias proliferativas como a Wnt, PI3k e MAPK. A integridade desta rede certamente tem um papel no surgimento/evolução do câncer de tiróide e necessita de novas pesquisas. Finalmente, novas investigacões sobre os eventos epigenéticos que ocorrem no TSHR e outros locais poderão trazer novas informações para uma terapia de base molecular nos carcinomas indiferenciados de tiróide. Agentes demetilantes direcionados, inibidores da histona-deacetilase, combinados com retinóides e RNAs específicos poderão auxiliar no tratamento futuro.


Subject(s)
Humans , Receptors, Thyrotropin/metabolism , Signal Transduction/physiology , Thyroid Neoplasms/genetics , Thyrotropin/metabolism , Cell Proliferation , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP/metabolism , GTP-Binding Proteins/metabolism , Gene Expression Regulation/physiology , MAP Kinase Signaling System/physiology , Mutation/genetics , Neoplastic Stem Cells/metabolism , Receptors, Thyrotropin/genetics , Thyroid Neoplasms/metabolism , Thyrotropin/genetics , Wnt Proteins/metabolism
12.
Experimental & Molecular Medicine ; : 185-194, 2007.
Article in English | WPRIM | ID: wpr-90614

ABSTRACT

Phytosphingosine-1-phosphate (PhS1P) was found to stimulate an intracellular calcium increase via phospholipase C but not pertussis toxin (PTX)- sensitive G-proteins in L2071 mouse fibroblasts. PhS1P also activated ERK and p38 kinase, and these activations by PhS1P were inhibited by PTX. Moreover, PhS1P stimulated the chemotactic migration of L2071 cells via PTX-sensitive Gi protein(s). In addition, the PhS1P-induced chemotactic migration of L2071 cells was also dramatically inhibited by LY294002 and SB203580 (inhibitors of phosphoinositide 3-kinase and p38 kinase, respectively). L2071 cells are known to express four S1P receptors, i.e., S1P1, S1P2, S1P3, and S1P4, and pretreatment with an S1P1 and S1P3 antagonist (VPC 23019) did not affect on PhS1P-induced chemotaxis. This study demonstrates that PhS1P stimulates at least two different signaling cascades, one is a PTX-insensitive but phospholipase C dependent intracellular calcium increase, and the other is a PTX-sensitive chemotactic migration mediated by phosphoinositide 3-kinase and p38 kinase.


Subject(s)
Animals , Humans , Mice , Phosphatidylinositol 3-Kinase/metabolism , Calcium Signaling/drug effects , Chemotaxis/drug effects , Estrenes/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibroblasts/cytology , GTP-Binding Proteins/metabolism , Gene Expression Regulation/drug effects , Pertussis Toxin/pharmacology , Phosphorylation/drug effects , Pyrrolidinones/pharmacology , RNA, Messenger/genetics , Receptors, Lysosphingolipid/genetics , Sphingosine/analogs & derivatives , p38 Mitogen-Activated Protein Kinases/metabolism
13.
Biol. Res ; 38(1): 89-99, 2005. ilus
Article in English | LILACS | ID: lil-404831

ABSTRACT

IP3 increase and de novo synthesis of scoparone are produced in the hypersensitive response (HR) of lemon seedlings against the fungus Alternaria alternata. To elucidate whether a G-protein and/or a protein tyrosine kinase (PTK) are involved in signal transduction leading to the production of such a defensive response, we studied the HR in this plant system after treatment with G-protein activators alone and PTK inhibitors in the presence of fungal conidia. No changes in the level of IP3 were detected in response to the treatment with the G-protein activators cholera toxin or mastoparan, although the HR was observed in response to these compounds as determined by the scoparone synthesis. On the contrary, the PTK inhibitors lavendustin A and 2,5-dihidroxy methyl cinnamate (DHMC) not only prevented the IP3 changes observed in response to the fungal inoculation of lemon seedlings but also blocked the development of the HR. These results suggest that the IP3 changes observed in response to A. alternata require a PTK activity and are the result of a G-protein independent Phospholipase C activity, even though the activation of a G-protein can also lead to the development of a HR. Therefore, it appears that more than one signaling pathway may be activated for the development of HR in lemon seedlings: one involving a G-protein and the other involving a PTK-dependent PLC.


Subject(s)
Alternaria , Citrus/microbiology , GTP-Binding Proteins/metabolism , /biosynthesis , Protein-Tyrosine Kinases , Calmodulin/metabolism , Cholera Toxin/pharmacology , Citrus/enzymology , Coumarins/metabolism , Enzyme Induction , Signal Transduction , Seedlings/enzymology , Seedlings/microbiology
15.
Arq. bras. endocrinol. metab ; 45(3): 228-239, jun. 2001. ilus, tab
Article in Portuguese | LILACS | ID: lil-285581

ABSTRACT

A maioria dos hormônios polipeptídicos e mesmo o cálcio extracelular atuam em suas células-alvo através de receptores acoplados á proteína G (GPCRs). Nos últimos anos, tem sido frequente a identificação e associação causal de mutações em proteínas G e em GPCRs com diversas endocrinopatias, como diabetes insipidus nefrogênico, hipotiroidismo familiar, puberdade precoce familiar no sexo masculino e nódulos tiroidianos hiperfuncionantes. Nesta revisão, abordamos aspectos referentes ao mecanismo de transdução do sinal acoplado à proteína G, e descrevemos como mutações em GPCRs podem levar a algumas doenças endócrinas. Finalmente, comentamos a respeito das implicações diagnósticas e terapêuticas associadas com o maior conhecimento dos GPCRs.


Subject(s)
Humans , Endocrine System Diseases/pathology , GTP-Binding Proteins/metabolism , Signal Transduction/physiology , Endocrine System Diseases/etiology , GTP-Binding Proteins , GTP-Binding Proteins/therapeutic use
16.
Indian J Physiol Pharmacol ; 2001 Jan; 45(1): 22-36
Article in English | IMSEAR | ID: sea-107141

ABSTRACT

Insulin resistance has emerged out as a concept linking diabetes mellitus and hypertension. Clinically it is characterized by hyperinsulinemia, hypertension, central obesity, abnormal lipid profile and cardiovascular complications. Insulin resistance is often associated with presence of anti-insulin antibodies and absent or dysfunctional insulin receptors. At molecular level insulin resistance appears to occur at the level of G-protein, kinase activation, glucose carriers (GLUT) and gene expression. Although with advent or research, the molecular mechanisms of insulin resistance are becoming more clear and there is development of new therapeutic agents like insulin sensitizers (thizolidinediones), in clinical practice, as of today, a patient with insulin resistance is looked upon as hypertensive or having diabetes mellitus. Accordingly he is taking either antihypertensives or antidiabetic drugs or both. It is thus essential to look into effects of these agents on insulin sensitivity. In recent years some scattered studies have been conducted to evaluate the effect of various antihypertensives and antidiabetics on insulin sensitivity. An antihypertensive or antidiabetic drug should directly benefit the cardiovascular risk profile of these patients. Although various newer approaches are explored to have a therapeutic benefit in insulin resistance, it is still a long way in the research, when a suitable pharmacological agent with least untoward effects will be available for the treatment of insulin residence.


Subject(s)
Phosphatidylinositol 3-Kinase/metabolism , Animals , Enzyme Inhibitors/therapeutic use , GTP-Binding Proteins/metabolism , Heart Failure/etiology , Humans , Hyperglycemia/complications , Hypertension/etiology , Hypoglycemic Agents/therapeutic use , Insulin Resistance/physiology , Monosaccharide Transport Proteins/metabolism , Phosphotransferases/metabolism , Signal Transduction/physiology
17.
Experimental & Molecular Medicine ; : 220-225, 2001.
Article in English | WPRIM | ID: wpr-144649

ABSTRACT

Low molecular weight GTP-binding proteins are molecular switches that are believed to play pivotal roles in cell growth, differentiation, cytoskeletal organization, and vesicular trafficking. Rab proteins are key players in the regulation of vesicular transport, while Rho family members control actin-dependent cell functions, i.e. the regulation of cytoskeletal organization in response to extracelluar growth factors and in dendritic neuron development. In this study, we have examined the regulation of small GTP-binding proteins that are implicated in neurosecretion and differentiation of neuron during ageing processes. Comparison of small GTP-binding proteins from the synaptosome and crude synaptic vesicles (LP2 membranes) of 2 months and 20 months old rat brain respectively showed no difference in the level of Rab family proteins (Rab3A and Rab5A). However, Rho family proteins such as RhoA and Cdc42 were elevated in LP2 membranes of the aged brain. The dissociation of Rab3A by Ca2+/calmodulin (CaM) from SV membranes was not changed during aging. Ca2+/CaM stimulated phosphorylation of the 22 and 55-kDa proteins in SV membranes from the aged rat brain, and inhibited phosporylation of 30-kDa proteins. GTPgammaS inhibited phosphorylation of the 100-kDa proteins and stimulated phosphorylation of the 70 kDa in LP2 membranes from both the young and aged rat brains, whereas GDPbetaS caused just the opposite reaction. These results suggest that protein phosphorylation and regulation of Rho family GTPases in rat brain appears to be altered during ageing processes.


Subject(s)
Cattle , Rats , Aging , Animals , Brain/metabolism , Calcium/pharmacology , Comparative Study , GTP-Binding Proteins/metabolism , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Molecular Weight , Phosphorylation/drug effects , Rats, Sprague-Dawley , Synaptic Membranes/metabolism , Synaptosomes/metabolism , cdc42 GTP-Binding Protein/biosynthesis , rab3A GTP-Binding Protein/metabolism , rab5 GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein/biosynthesis
18.
Experimental & Molecular Medicine ; : 220-225, 2001.
Article in English | WPRIM | ID: wpr-144637

ABSTRACT

Low molecular weight GTP-binding proteins are molecular switches that are believed to play pivotal roles in cell growth, differentiation, cytoskeletal organization, and vesicular trafficking. Rab proteins are key players in the regulation of vesicular transport, while Rho family members control actin-dependent cell functions, i.e. the regulation of cytoskeletal organization in response to extracelluar growth factors and in dendritic neuron development. In this study, we have examined the regulation of small GTP-binding proteins that are implicated in neurosecretion and differentiation of neuron during ageing processes. Comparison of small GTP-binding proteins from the synaptosome and crude synaptic vesicles (LP2 membranes) of 2 months and 20 months old rat brain respectively showed no difference in the level of Rab family proteins (Rab3A and Rab5A). However, Rho family proteins such as RhoA and Cdc42 were elevated in LP2 membranes of the aged brain. The dissociation of Rab3A by Ca2+/calmodulin (CaM) from SV membranes was not changed during aging. Ca2+/CaM stimulated phosphorylation of the 22 and 55-kDa proteins in SV membranes from the aged rat brain, and inhibited phosporylation of 30-kDa proteins. GTPgammaS inhibited phosphorylation of the 100-kDa proteins and stimulated phosphorylation of the 70 kDa in LP2 membranes from both the young and aged rat brains, whereas GDPbetaS caused just the opposite reaction. These results suggest that protein phosphorylation and regulation of Rho family GTPases in rat brain appears to be altered during ageing processes.


Subject(s)
Cattle , Rats , Aging , Animals , Brain/metabolism , Calcium/pharmacology , Comparative Study , GTP-Binding Proteins/metabolism , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Molecular Weight , Phosphorylation/drug effects , Rats, Sprague-Dawley , Synaptic Membranes/metabolism , Synaptosomes/metabolism , cdc42 GTP-Binding Protein/biosynthesis , rab3A GTP-Binding Protein/metabolism , rab5 GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein/biosynthesis
19.
Indian J Biochem Biophys ; 2000 Dec; 37(6): 369-76
Article in English | IMSEAR | ID: sea-26754

ABSTRACT

Photosynthesis is the ultimate driving force behind world food production. Modern agricultural practices have done much to maximize the benefits of photosynthesis through better land management and intensive crop breeding. However, enhancement in grain production is becoming increasingly dependent on biotechnology with every improvement becoming more difficult to achieve. With several crop species nearing the physical limits of grain production, more attention will be given to methods that enable farmers to consistently attain maximum yields. These efforts focus in part on how plants respond to the biotic and abiotic stresses that can significantly reduce potential yields, including the study of plant signal transduction pathways related to stress responses. Strong evidence is emerging that these pathways share many similarities to classical mammalian receptor systems including tyrosine-kinase receptors and G protein-coupled receptors. Several putative receptor-like proteins have been identified in maize and provide vast opportunities for studying plant signal transduction mechanisms. The elucidation of plant signaling pathways combined with modern technologies will not only serve to push harvest yields closer to the maximum theoretical levels but may also provide opportunities for actually increasing the theoretical maximum.


Subject(s)
GTP-Binding Proteins/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL